笔趣阁小说网手机小说首页小说搜索

返回《青鸟异闻录》

笔趣阁小说网(biqugeus.com)

首页 >> 青鸟异闻录 () >> 第298章
亲爱的书友,您现在访问的是转码页面,会导致更新不及时及无法正常下载,请访问真实地址:http://m.biqugeus.com/187860/

第298章(3/5)

曾研究过求解圆周率的问题。

刘徽所处的时代是社会上军阀割据,特别当时是魏、蜀、吴三国割据,那么在这个时候中国的社会、政治、经济发生了极大的变化,特别是思想界,文人学士们互相进行辩难,所以当时成为辩难之风,一帮文人学士找到一块,就像我们大专辩论会那样,一个正方一个反方,提出一个命题来大家互相辩论,在辩论的时候人们就要研究讨论关于辩论的技术,思维的规律,所以在这一段人们的思想解放,应该说是在春秋战国之后没有过的,这时人们对思维规律研究特别发达,有人认为这时人们的抽象思维能力远远超过春秋战国。  刘徽在《九章算术注》的自序中表明,把探究数学的根源,作为自己从事数学研究的最高任务。他注《九章算术》的宗旨就是“析理以辞,解体用图”。“析理”就是当时学者们互相辩难的代名词。刘徽通过析数学之理,建立了中国传统数学的理论体系。众所周知,古希腊数学取得了非常高的成就,建立了严密的演绎体系。然而,刘徽的 “割圆术”却在人类历史上首次将极限和无穷小分割引入数学证明,成为人类文明史中不朽的篇章。

刘徽(约225年—约295年),汉族,山东滨州邹平市 [1]人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。在中国数学史上作出了极大的贡献,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。

《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列。刘徽在曹魏景初四年注《九章算术注》。

但因解法比较原始,缺乏必要的证明,刘徽则对此均作了补充证明。在这些证明中,显示了他在众多方面的创造性贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则,改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=的结果。他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和圆面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”他计算了3072边形面积并验证了这个值。刘徽提出的计算圆周率的科学方法,奠定了此后千余年来中国圆周率计算在世界上的领先地位。

”的思想,这方法与后来求无理根的近似值的方法一致,它不仅是圆周率精确计算的必要条件,而且促进了十进小数的产生;在线性方程组解法中,他创造了比直除法更简便的互乘相消法,与现今解法基本一致;并在中国数学史上第一次提出了“不定方程问题”;他还建立了等差级数前n项和公式;提出并定义了许多数学概念:如幂(面积);方程(线性方程组);正负数等等.刘徽还提出了许多公认正确的判断作为证明的前提.他的大多数推理、证明都合乎逻辑,十分严谨,从而把《九章算术》及他自己提出的解法、公式建立在必然性的基础之上。虽然刘徽没有写出自成体系的著作,但他注《九章算术》所运用的数学知识,实际上已经形成了一个独具特色、包括概念和判断、并以数学证明为其联系纽带的理论体系。

刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。

刘徽的数学成就大致为两方面:

一是整理中国古代数学体系并奠定了它的理论基础,这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:

1用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术 的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。

2在筹式演算理论方面, 先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。

3在勾股理论方面 逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。

面积与体积理论


状态提示: 第298章
第3页完,继续看下一页